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A viscoelastic model (a mixing-length model with relaxation) is developed to investigate
the effect of turbulent advection on the mean flow perturbation and the drag force
induced by turbulent shear flow over an undulating surface. The relaxation term is
proportional to the ratio of eddy turnover time to travelling time; accordingly, near the
surface, the relaxation model reduces to an eddy-viscosity or mixing-length model,
while far from the surface it reduces to a rapid-distortion model.

The linear governing equations are transformed into streamline coordinates and
solved through matched asymptotic expansions. According to order-of-magnitude
estimates in Belcher, Newley & Hunt (1993), the drag force contributed by nonlinear
shear stress is of the same order as that contributed by asymmetric pressure arising
from the leeward thickening of the perturbed boundary layer. The nonlinear analysis
in the present model confirms this estimate in most cases. Our analytical results show
a dip in shear stress at the interface between the inner and outer layers and provide
evidence that this dynamical feature is related to eddy advection. Numerical calculation
using a shooting method gives results that compare well with the analysis.

1. Introduction

The mean flow, shear stress, pressure perturbations and drag induced by turbulent
flow of a homogeneous inviscid fluid over two-dimensional undulating topography
have been analysed by Jackson & Hunt (1975), Sykes (1980), Britter, Hunt & Richards
(1981), Hunt, Leibovich & Richards (1988, hereinafter referred to as HLR), Belcher,
Newley & Hunt (1993, hereinafter referred to as BNH) (see BNH for background
reference). Various Reynolds-averaging closure models have been constructed to
describe the turbulent motion in this problem: mixing-length models, eddy-viscosity
models and higher-order closure models. Speziale (1991) gave a thorough review on
these models.

It has been noticed that analogies exist between Newtonian turbulent flow and non-
Newtonian laminar flow (see Rivlin 1957 and Speziale 1991). Both Saffman (1977) and
Speziale (1987) proposed a nonlinear κ–ε model that includes the eddy viscoelastic
properties. Their models are empirically parameterized and are not well suited for
analytical development. In this present work, we take a fresh look at this problem by
using a different model that is simpler but sophisticated enough to incorporate eddy
viscoelasticity.

BNH, like their predecessors, posit a mixing-length model in the inner region (near
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the surface) but argue that a rapid-distortion model is more appropriate in the outer
region, and neglect the Reynolds stresses in the outer regions when they extended
HLR’s analysis to obtain a drag force formula. The resulting discontinuity in the
Reynolds stresses implies difficulties, which we avoid through a viscoelastic model (see
Bradshaw, Ferris & Atwell 1967; Davis 1972; Townsend 1972 and 1976, §7.13) :
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stress in the first-order closure models with a Boussinesq viscosity ν, and u and w are
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where a
"
is a constant and U

z
is the mean velocity shear. We assume an eddy viscosity

conserved along streamlines (cf. Miles 1993; van Duin & Janssen 1992) :
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where n is an integer distinguishing different models, h
B

is the surface elevation and
l¯ κ(z®h

B
) is a mixing length. Equation (1.3) reduces to the eddy viscosity model
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) uk when n¯ 0 and to Prandtl’s mixing-length model ν¯ κ#(z®h

B
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when n¯ 1. A viscoelastic model similar to (1.1)–(1.3) is derived by neglecting the
diffusion term in Townsend’s turbulent energy equation (cf. Appendix A).

Both HLR’s and BNH’s analyses include nonlinear inertial effects in the middle
layer, but inconsistently ignore them in the other layers. In the present model, by
applying an integral-equation formulation to the outer domain, we obtain matched
solutions of inner and outer layers without introducing the middle layer, which is
required by HLR’s and BNH’s analyses. Moreover, by going to second order in
an expansion in powers of the bottom slope, we derive leading-order nonlinear
approximations that are uniformly valid in the whole domain. Through order-of-
magnitude estimation, BNH predicted that nonlinear shear stress contributes to the
drag force at the same order as asymmetric pressure; nonetheless, they ignored it
in their drag force derivation. The present nonlinear approximation confirms this
estimate in most cases.

Our objective is to apply the viscoelastic closure to the Reynolds-averaged Navier–
Stokes equations, examine the turbulent flow over undulating topography with small
slopes, and calculate the effect of eddy advection in this problem. We present our
work in the following order. In §2, we discuss the general dynamics and associated
equations of this problem. Using matched asymptotic expansions, we then derive linear
solutions to these equations in §3, and discuss nonlinearity and calculate its leading-
order approximation in §4. An analytical formula for the drag force is obtained in §5.
We apply a shooting method to the linear perturbation equations in §6. Finally,
comparisons of computational results with analytical, experimental, observational,
and numerical ones using a second-order closure model are presented in §7 with a
discussion. And in §8, we conclude this paper by reviewing the main findings of this
study and discuss extending the present model to turbulent flow over a travelling water
waves (cf. Zou 1995, Chap. 1, §8).



A �iscoelastic model for turbulent flow o�er undulating topography 83

2. General dynamics and governing equations

We consider here the turbulent flow over a hill assuming that L}D' 1, h
!
}L' 1 and

ε¯ uk}κV' 1, where h
!

and L are the height and characteristic length of the hill, D
is the turbulent boundary layer (Ekman layer) depth, uk is the friction velocity, κ is von
Ka! rma! n’s constant, and V is the wind speed at an altitude of O(L) (see figure 1). We
neglect separation and buoyancy effects in this problem. Only the lower one-tenth of
the boundary layer (wall layer) is of interest for this study, and the Earth’s rotation is
negligible. We further assume that the approaching turbulent flow is neutrally stable
and fully developed; hence the shear stress is constant through the wall layer, and the
unperturbed mean flow obeys the logarithmic law:
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where z
!

is a roughness length (cf. Townsend 1976, §5.9). For an aerodynamically
smooth surface, z

!
is proportional to the viscous layer thickness, i.e. z

!
¯ (ν

k
}uk)

exp(®5κ), where ν
k

is kinematic viscosity; for an aerodynamically rough surface, z
!
is

about one-tenth of the average height of the roughness elements. We note that the
mean flow (2.1a, b) satisfies the no-slip condition at the surface.

At first order, the mean flow (2.1a, b) is displaced by the streamlines. As a result, the
perturbed mean flow becomes
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!

, (2.1c)

where h¯ h(x, z) is the vertical streamline displacement from its position (x, z) in the
unperturbed flow, which equals h

B
(x) at the surface (zU z

!
) and is zero far from the

surface (zU¢). Accordingly, we introduce the following streamline coordinates (cf.
Miles 1993) :

ξ¯x, η¯ z®h(ξ, η). (2.2a, b)

As illustrated in figure 2, the η in (2.2b) is equal to the height at which a streamline
originates upstream and is related to its stream function by

Ψ(η)¯&
η

!

U(ζ ) dζ, (2.3)

where U is the mean velocity defined in (2.1c) which may be rewritten as

U(η)¯
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κ

log 01
η

z
!

1 (2.4)

in the streamline coordinates. According to (2.3), the coordinate transformation
(2.2a, b) is equivalent to von Mises transformation (x, z)U (x,Ψ) (cf. Zeman & Jensen
1987). In these coordinates, each streamline coincides with a constant coordinate
η-line, and the controlling equations are homogeneous, so that their solutions are
easier to pursue.
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F 1. Schematic of turbulent flow over a hill showing the three layers with different
dynamics (vertical scale is exaggerated).
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F 2. Illustration of streamline coordinates and the zeroth-order mean velocity profile U(η)
(vertical scale is exaggerated).

In their analyses, BNH also defined a displaced coordinate for each wavenumber
k :

ξ¯x
1

ik
h
B
(k) e−kη, η¯ z®h

B
(k) e−kη, (2.5a, b)

where the vertical coordinate displacement h in (2.2b) is replaced by the streamline
displacement of the potential flow h

B
(k) e−kη, and h

B
(k) is the Fourier transform of

topography function h
B
(x). The dependence of these coordinates on k renders them

more complicated and unsuitable for studying nonlinear effects.
Following Jackson & Hunt (1975), HLR, Jacobs (1987), Jenkins (1992) and Miles

(1993), we neglect the molecular viscous effects in this problem so that the following
analysis is valid for z" zν, where zν ¯ ν

k
}κuk¯O(ε−"Re−"L) is the viscous layer

thickness at which kinematic viscosity ν
k

becomes comparable to eddy viscosity κuk z,
and Re¯VL}ν

k
is the Reynolds number of the boundary layer. At very high Reynolds

numbers, the viscous layer is very thin compared with boundary layer thickness, i.e.
zν 'L, and it has minor influence on the dynamics of the full turbulent region.
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To find the solutions to this problem, in the following subsections we transform the
Reynolds-averaged Navier–Stokes equations into the streamline coordinates, non-
dimensionalize and linearize them, and Fourier-transform the linear equations. The
resultant equations, combined with a viscoelastic closure model, lead to a governing
equation with the Fourier transform of h(ξ, η), H(k, η), as the only unknown variable.
Using matched asymptotic expansions, we then obtain the analytical solution H(k, η)
in §3.

2.1. The general dynamics

The x- and z-components of the Reynolds-averaged Navier–Stokes equations are
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where u3©uª and w3©wª are the mean velocity components, p is the mean pressure,
ρ is the density, u« and w« are randomly fluctuating velocities in the x- and z-directions,
© ª implies a y-average, and the subscripts x and z signify partial differentiation.
Invoking the corresponding transformation of the gradient operator and the
substantial derivative,
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assuming steady flow so that ¥
t
3 0, we rewrite (2.6a, b) in the streamline coordinates

as
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where subscripts ξ and η represent ¥ξ and ¥η,
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Here, repeated indices indicate summation over 1 and 3, π, ρσ and ρτ are the modified
pressure, deviatoric normal stress and shear stress, and "

$
©u!

i
u!
i
ª is the mean square of

the velocity fluctuation. Both (2.8a) and (2.8b) include extra terms that are associated
with the coordinate transformation and are negligible far from the surface where the
streamline displacement h(ξ, η) is very small.

Applying the gradient operator (2.7a) to the stream function (2.3) yields the
associated velocity components as

u¯
U(η)

1hη

, w¯
U(η) hξ

1hη

. (2.10a, b)
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It is worth emphasizing that the velocity fields in the form of (2.10a, b) satisfy the
continuity equation automatically, which simplifies the subsequent development.

The boundary conditions follow from no-slip and no-normal-flow conditions at the
surface and the requirement of finite energy at the top of the boundary layer, i.e.

u,w¯ 0 as zU z
!
, u®U,w,π, τ,σ¯ 0 as zU¢. (2.11a–g)

In the following section §2.2, we will introduce a viscoelastic closure model that
relates τ and σ to u and w, which complements (2.8)–(2.11).

2.2. The �iscoelastic model

We hypothesize a viscoelastic eddy model (cf. Bradshaw et al. 1967; Davis 1972;
Townsend 1972 and 1976, §7.13) :
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¯ 1}(a
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¯®©u«w«ª}q#¯ 0.15 is the ratio between shear stress ®©u«w«ª

and turbulent energy q#, τ
e
and σ
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are the corresponding shear stress and normal stress

in the first-order closure models with a Boussinesq viscosity ν. We note that T
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¯ κη}

(a
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uk)¯ l}(a

"
uk), which is proportional to the ratio of mixing length and friction

velocity, i.e. the characteristic length scale and velocity of turbulent motion, is an eddy
relaxation time. Neglecting the diffusion term in Townsend’s turbulent energy
equation, we derive a viscoelastic model similar to (2.12) (see Appendix A).

Van Duin & Janssen (1992) consider first-order closure models for which

ν¯ l "+n u"−n
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n

, (2.13a)

where n is an integer distinguishing different models, l¯ κ(z®h
B
) is a mixing length,

h
B

is the surface elevation; (2.13a) reduces to the eddy viscosity model ν¯ κ(z®h
B
) uk

when n¯ 0 and Prandtl’s mixing-length model ν¯ κ#(z®h
B
)# r ¥u}¥zr when n¯ 1.

Instead, to incorporate the effect of streamline distortion, we hypothesize the mixing
length

l¯ κ(z®h)¯ κη (2.13b)

which is conserved along streamlines η¯ constant (see Townsend 1972 and Miles
1993).

Applying the gradient operator and substantial derivative (2.7a, b) to (2.12a, b)
leads to
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in which nonlinear inertial terms are retained to be consistent with their inclusion in
the momentum equations (2.8a, b).
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2.3. Non-dimensional go�erning equations and boundary conditions

For simplicity, we non-dimensionalize (2.8a, b) and (2.14a, b) by the scalings

h
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U h
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h
B
, hU h

!
h, (ξ, η)UL(ξ, η), (u,w)UV(u,w), (2.15a–d )
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, (2.15e–h)

where h
!

is the height of the hill, V is the mean velocity at η¯L, µ¯ h
!
}L and

ε¯ uk}(κV ) are the basic small parameters of the problem (typical values of ε are
0.03–0.07 in the atmospheric boundary layer), and invoke the non-dimensional
velocity fields in (2.10a, b) :
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}L is small and omitting nonlinear terms of O(µ#), we then have
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the zeroth-order non-dimensional eddy viscosity ν is given by
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is the dimensionless mean velocity, and

τ
!
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Uη ¯ (εκ)# (2.19e)

is the dimensionless zeroth-order constant shear stress for n¯ 0. It follows from
V¯U*(L), where superscript n denotes a dimensional variable, that U(1)¯ 1 and
ε¯®log η

!
, where η

!
¯ z

!
}L is a dimensionless roughness length.

Combined with (2.16a, b), (2.11a–d ) gives the boundary conditions for h and hη, i.e.

h¯ h
B
, Uhη ¯ 0 as ηU η

!
, h¯ 0, hη ¯ 0 as ηU¢. (2.20a–d )

Substituting (2.18a, b) into (2.17c, d ), and introducing Fourier transforms with
respect to ξ,
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and the boundary conditions (2.20a–d ) transform to

H¯H
B
, UHη ¯ 0 as ηU η

!
, H¯ 0, Hη ¯ 0 as ηU¢,

(2.23a–d )

where k is the dimensionless wavenumber. The presence of argument lists (k,η) and (k)
denotes the Fourier transform of the corresponding variable and will be dropped
hereinafter for convenience.

For sinusoidal topography of wavenumber k, we may proceed in the same manner,
but with a different inverse Fourier transform

[h(ξ, η), h
B
(ξ ),π(ξ, η), τ(ξ, η)®τ

!
,σ(ξ, η)]

¯Re ²[H(k, η),H
B
(k),Π(k, η),T(k,η),Σ(k, η)] exp(ikξ )´. (2.24)

3. Analytical solutions

Following Jackson & Hunt (1975), Sykes (1980) and HLR, we use the matched
asymptotic expansions to seek the solutions to this problem. We divide the whole
domain above the surface into three layers : outer layer, inner shear stress layer and
inner surface layer, in each of which different dynamics governs, and the perturbation
shear stress is O(ε#), O(ε"), O(ε!) respectively. Solutions to equations (2.22a–d ) will be
constructed for each layer and eventually matched.

3.1. Inner shear stress layer

A balance between the inertial and shear stress terms in (2.22a) provides the estimate
of the thickness of the inner layer l, namely

l log
l

η
!
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where η
!

is the roughness length, and n is the integer introduced in the first-closure
models (cf. (2.13a)). We emphasize that all the following length variables such as l and
η
!
have been non-dimensionalized with respect to L. In the atmosphere, the thickness

of the inner layer is typically much smaller than that of the turbulent boundary layer
but much larger than the roughness length, i.e. η

!
' l' 1 (see figure 3a). It then is

appropriate to introduce the stretched coordinate
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which is related to the small parameter ε by
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ε

1ε log l
(3.3b, c)

and l by

δ¯
l

(n1) κ#

(3.3d )

according to (3.1) (see figure 3b, c).
The dimensionless mean velocity U is thus related to the stretched coordinate ηW by

U¯U(l ) (1δ log ηW ), (3.4)

where U(l )¯ 1ε log l is the value of U at the top of the inner layer where η¯ l.
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F 3. Variation of (a) inner shear-stress-layer thickness l, (b) small parameter δ and (c)
dimensionless mean velocity at the top of inner layer U(l ) with dimensionless roughness length η

!
and

small parameter ε. ——, n¯ 0; –––, n¯ 1; ——, n¯ 2.

According to the vertical pressure gradient (2.22b), the pressure Π may be taken as
a constant Π

!
(k) with an error factor 1O(δ#). The Σ-terms are O(δ#) in both (2.22a)

and (2.22b) and therefore may also be omitted at O(δ). Omitting k#ν
!
UH of O(δ#)

(2.22c) and then substituting it into (2.22a), we have
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We decompose the solution to (3.5) into the complementary and particular parts, i.e.
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Substituting U from (3.4) into (3.6b), neglecting terms of O(δ#) and invoking (3.2), we
transform (3.6b) into an equation with the independent variable ηW :

ikHq ηW (k, ηW )¯ 9 ηW Hq ηW ηW
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Integrating (3.7) over (ηW
!
, ηW ) yields
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!
. By introducing a

new independent variable :
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we reduce (3.8a) to Whittaker’s equation (see Olver 1974 and Abramowitz & Stegun
1970, §13.1.31),
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where F is a confluent hypergeometric function, and the constant coefficient C
h

is
determined by matching with the inner surface layer at the bottom of the inner shear
stress layer, where ηa U 0.

Differentiating (3.9d ) about ηW , and invoking (3.6a) and (3.8b), we obtain
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where the constant coefficient C is determined by matching with the inner surface layer
at the bottom of the inner layer. Near the surface (ηW U ηW
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where γ J̄ 0.577 is Euler’s constant, and Γ(1}2β) and φ are the gamma and digamma
functions respectively. Solutions (3.11b, d ) match those of the inner surface layer
(see §3.2) only if

C
h
¯

2δΠ
!
Γ(1}2β)

U(l )#
, C¯H

B
®

2δlΠ
!

ikU#(l )
, (3.12a, b)

hence (3.11a, b) and (3.11c, d ) become

Hη(k,ηW )¯
Π

!

U #


2δΠ

!

U(l )#
Γ 0 1

2β1 exp(®"

#
ηa ) 9"#ηa F 01

1

2β
, 2, ηa 1®F 0 1

2β
, 1, ηa 1: (3.13a)

¯
Π

!

U(l )# (1®2δ(log ηW ®Γ 0 1

2β1 exp(®"

#
ηa ) 9"# ηa F01

1

2β
, 2, ηa 1

®F 0 1

2β
, 1, ηa 1:**O(δ#) (3.13b)

and

H¯H
B


Π
!

U #

η01
2

εU
I12δΓ(1}2β)

U #(l )
Π

!
η exp(®"

#
ηa )F 01

1

2β
, 2, ηa 1® 2δlΠ

!

ikU#(l )

(3.13c)

¯H
B


Π
!

U#(l)
η(1®2δ9logηW ®1®Γ 0 1

2β1 exp(®"

#
ηa )F 01 1

2β
, 2,ηa 1:*O(δ#). (3.13d )

Differentiating (3.13a, b) with respect to ηW gives

Hηη(k, ηW )¯
®2Π

!
Uη

U $


2δΠ

!

U(l )#
Γ 0 1

2β1
dηa
dηW

exp(®"

#
ηa ) 0"% ηa 

1

2β1F 01
1

2β
, 2, ηa 1 (3.13e)

¯
2δΠ

!

U(l )# (
1

η
Γ 0 1

2β1
dηa
dηW

exp(®"

#
ηa ) 0"% ηa 

1

2β1F01
1

2β
, 2, ηa 1*O(δ#), (3.13 f )

where dηa }dηW ¯ 2ikβ. Near the surface where UU 0 (ηW U ηW
!
), on the right-hand-side of

(3.13e), the first term has a singularity, which is cancelled by that of the second term.
We recognize the imaginary term on the right-hand side of (3.13c), ®2δlΠ

!
}ikU#(l ),

as an asymmetric component of the vertical streamline displacement H, which was
called leeward streamline thickening by BNH. In the following sections, we show that
this term composes the main part of the asymmetric pressure and drag force.

The particular part of the solution Hη in (3.13a), i.e. Π
!
}U #, is the leading-order

perturbation to the mean flow within this layer, and is the same as its solution in linear
potential flow. A similar conclusion was also drawn by Sykes (1980). In the subsequent
section, we show that the leading-order nonlinear corrections to the preceding linear
formula are precisely those of nonlinear potential flow, and related to the pressure term
Π. It follows then that pressure determines the leading-order perturbation of velocity
fields. The same conclusion holds for the outer layer flow (see §3.3). Nevertheless, the
Reynolds shear stress accounts for the leading-order η-dependent perturbation,
suggesting its key role in energy and momentum exchange between different layers as
well as vertical structure of turbulent flow. Moreover, as demonstrated in the next
subsection, shear stress determines the leading-order perturbation of velocity fields in
the inner surface layer.
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3.2. Inner surface layer

Within a very thin layer next to the surface where ηW U ηW
!
, ln ηW U ln 1}ηW

!
3®δ−", so that

the asymptotic expansions in §3.1 are no longer valid; at the same time UU 0 so that
a logarithmic singularity appears in solutions (3.13a, c, e). Consequently, we shall
approach the problem separately in this region. Following HLR, we call this region the
inner surface layer, and assume that the thickness of this layer is about the same order
as the roughness length.

Introducing a new variable

Φ(k, η)¯U #Hη(k, η)®Π
!

(3.14a)
in (3.5) yields

ikΦ¯ 9 (ν}U )Φη

1ikαU}Uη
:
η

, (3.14b)

which may be rewritten as

d

dUq 0
1

Uq (1ikαη
!
Uq exp(Uq ))

dΦ

dUq 1¯
ikη

!
exp(Uq )

(n1) κ#

Φ, (3.15a)

with a new independent variable

Uq ¯U}ε¯ log η}η
!
. (3.15b)

Combination of (3.14a) and (2.23b) gives the boundary condition for Φ at the surface,
i.e.

Φ¯Φ
!
¯®Π

!
as ηU η

!
. (3.16)

Through iterative integration, we then obtain the solution of (3.15a), subject to
boundary conditions (3.16). We start with approximating (3.15a) by

d

dUq 0
1

Uq (1ikαη
!
Uq exp(Uq ))

dΦ

dUq 1¯ 0, (3.17)

whose solution is found by integration as

Φ¯Φ
!
®

T
!

2(n1) κ#

[Uq #ikαη
!
exp(Uq ) (Uq #®2Uq 2)], (3.18a)where

T
!
¯

®(n1) κ#

Uq (1ikαη
!
Uq exp(Uq ))

dΦ

dUq )ηUη
!

(3.18b)

is the shear stress at the surface. It follows that solution (3.18a) corresponds to
constant shear stress in the inner surface layer.

Substituting (3.18a) into the right-hand side of (3.15a), integrating it over (η
!
, η) and

omitting terms of O(η
!
)#, we finally obtain

Φ¯Φ
!
®

T
!

2(n1) κ#

²Uq #ikαη
!
[exp(Uq ) (Uq #®Uq 1)®1]´


ikη

!

(n1) κ#

²Φ
!
(Uq ®1) exp(Uq )Φ

!
®9Φ!

®
T
!

(n1) κ#
:Uq #2

®
T
!

2(n1) κ#

(Uq $®5Uq #12Uq ®12)
6T

!

(n1) κ#
* . (3.19)
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Combination of (3.19) and (3.14a) gives the asymptotic value of Hη as ηU lηW :

Hη ¯®
T
!

2(n1) (εκ)#
O(η

!
)¯H

!
ηO(η

!
), (3.20)

where H
!
η ¯®T

!
}[2(n1) (εκ)#] is a constant proportional to the surface shear stress.

Equation (3.20) shows that, at leading order, the perturbation flow fields are
determined by the Reynolds shear stress instead of pressure as in the outer and inner
shear stress layers, which suggests that different dynamics governs this region and that
it is necessary to treat this region separately in this problem.

Matching solution Hη in (3.20) with its inner limit of the shear stress layer, i.e.
Hη(k, ηW U ηW

!
) in (3.11b), we have

T
!
¯®2(n1) (εκ)#U−#(l )Π

!
[12δ(βφ(1}2β)2γln(2ikβ))] (3.21a)

and

C
h
¯

2δΓ(1}2β)

U #(l )
Π

!
. (3.21b)

We now integrate (3.20) over (η
!
, η) and obtain

H¯H
B
®H

!
η η. (3.22)

Matching solution H in (3.22) with its inner limit of the shear stress layer, i.e.
H(k, ηW U ηW

!
) in (3.11d ), we also have

C¯H
B
®

2δlΠ
!
²1U#

!
}U #(l )´

ikU#(l )
, (3.23)

where the constant pressure Π
!
is further determined by matching the inner and outer

solutions of Hη and H at the interface of the inner and outer layers.

3.3. Outer layer

In the outer layer where η¯O(1), the Reynolds stresses are O(ε#) relative to the inertial
term and therefore may be neglected to derive solutions with an error factor 1O(ε#).
The momentum equations (2.22a, b) then reduce to

U #Hη(k, η)¯Π, Πη(k, η)¯k#U #H, (3.24a, b)

where the mean velocity now takes the form

U¯ 1ε ln η. (3.25)

According to (3.24a) and (3.24b), the outer flow conserves perturbation vorticity along
streamlines, so that the perturbation flow is irrotational on the assumption of zero
vorticity in the upstream limit. Previous models (cf. Sykes 1980; HLR) drew similar
conclusions on the character of the flow in the outer layer.

Eliminating Π from (3.24a) and (3.24b) leads to

(U #Hη)η®k#U #H¯ 0. (3.26)

Proceeding as in Appendix C of Miles (1993), we first posit the solution to (3.26) in the
form

UH¯ψ(η) exp(®kη), (3.27)
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and transform (3.26), subject to the outer conditions ψUψ¢, to the integral equation

ψ¯ψ¢
1

2 rkr&
¢

η

²1®exp[®2 rkr(ζ®η)]´U−"Uζζ ψdζ, (3.28)

where ζ is a dummy variable.
We then obtain the solution of (3.28) through iteration, starting from the first

approximation
ψ¯ψ¢O(ε). (3.29a)

Combining (3.25) and (3.29a) in (3.28), we further derive the second approximation

ψ¯ψ¢ (1
1

2 rkr&
¢

η

²1®exp[®2 rkr(ζ®η)]´U−"Uζζ dζ*
¯ψ¢ (1®&

¢

η

exp[®2 rkr (ζ®η)]Uζ dζO(ε#)*
¯ψ¢[1®ε exp(2 rkr η)E

"
(2 rkr η)O(ε#)], (3.29b)

where E
"

is the exponential integral (cf. Abramowitz & Stegun 1970, §5). Hence
altogether from (3.25), (3.27) and (3.29b), we have now the following solutions:

H(k, η)¯H¢²1®ε[E
"
(2 rkr η) exp (2 rkr η)ln η]O(ε#)´ exp(®rkr η), (3.30a)

Hη(k, η)¯®H¢ rkr ²1ε[E
"
(2 rkr η) exp(2 rkr η)®ln η]O(ε#)´ exp(®rkr η),

(3.30b)

where H¢ is a constant coefficient to be determined by matching outer and inner
solutions. We note that from their maximum value at the top of inner shear stress layer,
the solutions (3.30a, b) decay exponentially to zero as ηU¢ and therefore satisfy
boundary conditions (2.23c, d ) there.

3.4. Matching inner and outer solutions

We next derive the coefficients Π
!
through matching the inner limits of the outer-layer

solutions H and Hη in (3.30a, b) with the outer limits of the inner-layer solutions H and
Hη in (3.11a, c).

From the outer-layer solutions (3.30a, b), we have the asymptotic behaviours of H
and Hη at ηU lηW , namely

H(k, ηU lηW )¯H¢[1®rkr lηW ε(γln 2 rkr)ε rkr lηW (γln 2 rkr2 ln l2 ln ηW ®2)]
(3.31a)

and
Hη(k, ηU lηW )¯®H¢ rkr [1®ε(γln 2 rkr2 ln l2 ln ηW )], (3.31b)

where γ¯ 0.577I is Euler’s constant. Similarly, from the inner-layer solutions
(3.13a, c), we also have the asymptotic behaviours of H and Hη at ηW U¢, namely

H(k, ηW U¢)¯H
B
Π

!
η[1®2ε(ln η®1)]®

2δlΠ
!

ikU#(l )
(3.32a)

¯H
B


Π
!

U #(l )
η[1®2δ(ln ηW ®1)]®

2δlΠ
!

ikU #(l )
O(δ#) (3.32b)

and

Hη(k, ηW U¢)¯Π
!
(1®2ε ln η)¯

Π
!

U #(l )
(1®2δ ln ηW )O(δ#). (3.32c, d )
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Matching (3.31b) with (3.32c) then gives

Π
!
¯®rkrH¢[1®ε(γln 2 rkr)]. (3.33)

Matching (3.31a) with (3.32a, b) and invoking (3.33a) leads to

H¢ ¯H
B91®ε(γln 2 rkr)ε#(γln 2 rkr)#

2 rkr δl
ikW(l )#

(1®3ε(γln 2 rkr)): (3.34a)

¯H
B91®ε(γln 2 rkr)ε#(γln 2 rkr)#

2 rkr δl
ik

(1®ε(γln 2 rkr)®2ε ln l):. (3.34b)

Substituting (3.34a, b) into (3.33) thus gives the constant pressure term

Π
!
(k)¯®H

B
rkr 91®2ε(γln 2 rkr)2ε#(γln 2 rkr)#

2 rkr δl
ikW(l )#

(1®4ε(γln 2 rkr)):
(3.35a)

¯®H
B
rkr91®2ε(γln2 rkr)2ε#(γln2 rkr)#

2 rkrδl
ik

(1®2ε(γln2 rkrln l )): ,
(3.35b)

whose imaginary part is

Im (Π
!
(k))¯ 2(n1) (εκ)#W(l )−%H

B
k[1®4ε(γln 2 rkr)] (3.35c)

¯ 2(n1) (εκ)#W(l )−#H
B

k[1®2ε(γln 2 rkrln l )]. (3.35d )

3.5. Structure of turbulence

From the shear-stress formula (2.17c) or (2.17d ), we may estimate the height where
turbulent advection becomes important compared to turbulent production and
dissipation by

α
U

Uη

¯ 1 (3.36)

which, together with (2.19c) and (2.19d ), gives

η
a
log

η
a

η
!

¯ a
"
¯ 0.15, (3.37)

where η
a

is the height at which the first-order closure models become invalid. The
relaxation time for eddies is T

e
¯ 1}a

"
Uη, the time required for eddies to pass over the

topography is T
t
¯ 1}U, so that the ratio of these two time scales is T

e
}T

t
¯U}(a

"
Uη)¯

αU}Uη. Near the surface where η! η
a

we haveT
e
}T

t
¯αU}Uη " 1, namely eddies

evolve in a time scale T
e
smaller than their travelling time T

t
; hence they attain local

equilibrium, and the viscoelastic model (2.12) reduces to a first-order closure model
τ¯ τ

e
¯ ν(u

z
w

x
). On the other hand, far away from the surface where η" η

a
we have

T
e
}T

t
¯αU}Uη ! 1, namely that within their travelling time T

t
eddies are only weakly

perturbed by the undulation of topography, so that Dτ}DtU 0, i.e. shear stress is
conserved along streamlines, and the viscoelastic model reduces to rapid-distortion
theory.

Invoking αE 1}κ#, we find that (3.1) reduces to (3.37) for n¯ 0, so that lE η
a
,

namely eddy advection becomes important at the top of the inner layer. This result is
conceivable from the fact that the vertical structure of the turbulent flow couples with
that of the mean flow.
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4. Nonlinear correction

From the solutions H, Hη and Hηη in (3.13a, c, e), we estimate that the linear
components of pressure, inertia and Reynolds stress terms in the governing equations
(2.8a, b) are O(1), O(1) and O(δ) ; the nonlinear components of these terms are O(µ)
relative to their linear components and, therefore, are O(µ), O(µ) and O(δµ)
respectively. It follows that the leading-order nonlinear equation in this problem is
made up of only nonlinear terms associated with pressure and inertia ; that is, it takes
the same form as that of potential flow. Omitting the Reynolds stress terms in (2.8a)
and (2.8b) leads to

®U #hξη ¯®πξ(1µhη)$µπη hξ(1µhη)#, πη ¯U #0 hξ

1µhη
1

ξ

. (4.1a, b)

We now substitute (4.1b) into (4.1a) and obtain the Bernoulli equation

912 0
U

1µhη
1#1

2 0
µUhξ

1µhη
1#µπ:

ξ

¯ 0. (4.2)

Assuming that the perturbation to the mean flow vanishes in the upstream limit and
integrating (4.2) over (®¢, ξ), we obtain

0 U

1µhη
1#0 µUhξ

1µhη
1#2µπ¯U #. (4.3)

Assuming a small topographic slope µ, we expand the perturbation variables hξ, hη and
π in powers of µ, i.e.

hη ¯ h(!)
η µh(")

η O(µ#), hξ ¯ h(!)
ξ µh(")

ξ O(µ#), π¯π(!)µπ(")O(µ#).
(4.4a–c)

Substituting (4.4a–c) into (4.3), at O(µ!) we then have

h(!)
η ¯

π(!)

U #

, (4.5a)

and at O(µ") we then have

h(")
η ¯ "

#
µ 9(h(!)

ξ )#3
(π(!))#

U %
: . (4.5b)

As we argued at the beginning of this section, formulas (4.5a) and (4.5b) are valid with
an error factor 1Ο(δ), even if we consider Reynolds stresses. Combined with (4.5a),
(4.5b) yields

h(")
η ¯ "

#
[3(h(!)

η )#(h(!)
ξ )#], (4.6)

which is used to derive the leading-order nonlinear correction to the drag force in the
next section.

5. Drag force

Both the pressure and the Reynolds stresses at the surface contribute to the
perturbation force exerted on the topography, which is given by the following
integration along the surface :

D
i
¯®ρ&

¢

−¢

(σ
ij
®pδ

ij
)η=η

!

n
j
dl, (5.1a)
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where ρ is the density, p is the pressure, σ
ij

is the Reynolds stress tensor, and n
j
is the

unit normal vector of the surface. The topographical drag force is given by the
horizontal component of (5.1a), namely

D¯ ρ&
¢

−¢

[τ®τ
!
hξ(π®σ)]η=η

!

dξ[1O(µ#)], (5.1b)

where ρτ
!
¯ ρu#

* is the zeroth-order shear stress. Equation (5.1b) indicates that the drag
force comes from the perturbation shear stress, the pressure and normal stress in phase
with the slope of the topography. Using the scalings (2.15a–g), we non-dimensionalize
(5.1b) as

D

ρV #L
¯µ&

¢

−¢

[τ®τ
!
µhξ(π®σ)]η=η

!

dξO(µ#), (5.1c)

which may be decomposed into three components :

( Dτ

ρV #L
,

Dσ

ρV #L
,

Dπ

ρV #L*¯µ&
¢

−¢

²(τ®τ
!
),®µhξ σ,µhξ π´η=η

!

dξO(µ#). (5.2a–c)

BNH, Sykes and others showed that the drag force from the linear shear stress is
zero, which will be confirmed next. Hence, the leading-order drag force is O(µ#) and
comprises contributions from the nonlinear shear stress, the linear normal stresses and
linear pressure. The previous analyses by BNH and others are linear, and nonlinear
shear stress is implicitly neglected in their drag force calculations without verification;
therefore, it is desirable to test this assumption by computations.

Substituting (2.18a) and (2.18b) into (2.17c) and (2.17d ), invoking (4.4a, b), and
considering that the mean velocity is zero at the surface, we obtain

Dτ

ρV #L
¯®µ(εκ)#&

¢

−¢

²(n1) [2hη®(2n3)µh#
η]µh#

ξ ´η=η
!

dξ

¯®µ(εκ)#&
¢

−¢

²2(n1) h(!)
η ²(n1) [2h(")

η ®(2n3)µ(h(!)
η )#]

µ(h(!)
ξ )#´´η=η

!

dξ, (5.3a)

Dσ

ρV #L
¯ 2µ#(εκ)#&

¢

−¢

(h(!)
ξ )#)

η=η
!

dξO(µ$), (5.3b)

Dπ

ρV #L
¯µ#&

¢

−¢

(h(!)
ξ π(!))η=η

!

dξO(µ$), (5.3c)

where superscripts (0) and (1) imply the linear and nonlinear parts of the variable. The
sum of (5.3a) and (5.3b) give the contribution of the deviatoric Reynolds stresses

DτDσ

ρV #L
¯®µ(εκ)#&

¢

−¢

²2(n1) h(!)
η ²(n1) [2h(")

η ®(2n3)µ(h(!)
η )#]®µ(h(!)

ξ )#´´η=η
!

dξ.

(5.4)

Combined with the Fourier transform of (2.21), the linear part of (5.4) reduces to

D
l

ρV #L
¯

DτDσ

ρV #L
¯®2(n1) (εκ)#(2πg )−"Hη(k, η)rη=η

!

, (5.5)
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where πg ¯ 3.14159…. Combining (3.21a) and (3.34a), and invoking (3.20), we obtain

Hη rη=η
!

¯®H
B

rkrW(l )−#²1®2ε(γln 2 rkr)2δ[βφ(1}2β)2γln(2ikβ)]´, (5.6)

which yields D
l
}(ρV #L)¯ 0, i.e. the linear Reynolds stresses do not contribute to the

drag force.
Combined with the leading-order nonlinear correction (4.6), the nonlinear part of

(5.4) reduces to

D
n

ρV #L
¯

DτDσ

ρV #L
¯ n(εκ)#µ#&

¢

−¢

[2(n1) (h(!)
η )#®(h(!)

ξ )#]η=η
!

dξ, (5.7a)

which becomes zero when n¯ 0 (the eddy viscosity model), and

D
n

ρV #L
¯

DτDσ

ρV #L
¯ (εκ)#µ#&

¢

−¢

[4(h(!)
η )#®(h(!)

ξ )#]η=η
!

dξ, (5.7b)

when n¯ 1 (the mixing-length model).
Applying Parseval’s theorem to (5.3c), and using Π

!
in (3.35c) as the Fourier

transform of pressure at the surface, we obtain the contribution of pressure to the drag
force as

Dπ

ρV #L
¯µ#(2πg )−"&

¢

−¢

(®ikH*Π
!
)η=η

!

dkO(µ$)

¯ 2(n1)µ#(εκ)#U(l )−%(2πg )−"&
¢

−¢

k#[1®4ε(γln 2 rkr)] rH
B
r#dkO(µ$),

(5.8)

where the superscript * denotes the complex conjugate, and H
B

is the Fourier
transform of the non-dimensional surface elevation h

B
. For sinusoidal topography

with wavenumber k and complex amplitude H
B
, the drag force formula (5.8) reduces

to

Dπ

ρV #L
¯ "

#
Re(®ikH$

B
Π

!
)O(µ$)

¯ 2(n1)µ#(εκ)#U(l )−%[1®4ε(γln 2 rkr)]k# rH
B
r#O(µ$). (5.9)

Invoking the scalings (2.15) and

V¯U(L)¯
uk
κ

ln
L

z
!

¯
uk
εκ

, (5.10)

we now dimensionalize (5.9) and obtain

Dπ ¯Cπ ρu#
* &

¢

−¢

h#
Bξ(ξ ) dξ, (5.11a)

where h
Bξ is the surface slope,

Cπ ¯ 2(n1) [1®4ε(γln 2 rkr)]
1

U %(l )
¯ 2(n1)

U %(η
"
)

U %(l )
, (5.11b)

and

η
"
¯

1

2k
exp (®γ). (5.11c)
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F 4. (a) The perturbation drag force Dπ due to pressure and D
n

due to nonlinear shear stress
as a function of dimensionless roughness length η

!
and small parameter ε for a sinusoidal terrain with

wavenumber k¯ "

#
π (equations (5.11a) and (5.14a), terms of O(ε) are omitted in calculation). ——,

Dπ for n¯ 0; –––, Dπ for n¯ 1; [[[[, D
n
for n¯ 1. (b) Perturbation drag force on a sinusoidal terrain

with wavenumber k¯ "

#
π : analytical results of present model (5.11a) for [[[[, n¯ 2; ––––, n¯ 1;

–[–, n¯ 0; ——, BNH’s truncated mixing-length model ; D, BNH’s numerical computation of
second-order closure model ; , Townsend’s (1980) numerical model ; n, Zilker & Hanratty’s (1979)
experiment; ¬, Townsend’s (1972) numerical model.
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For comparison, we list the formula for Cπ from some previous authors:

Cπ ¯ 2 9ln 1

kz
!

®C:
1

2

3

4

C¯ 0

C¯γln 2

(Knight 1977; Jacobs 1987),

(Miles 1993),
(5.12a)

Cπ ¯ 4 (Sykes 1980), (5.12b)

Cπ ¯
4

U %(l )
(BNH; Belcher & Hunt 1993). (5.12c)

If Sykes (1980), BNH and Belcher & Hunt (1993) had followed Knight (1977), Jacobs
(1987) and Miles (1993), and used an eddy-viscosity model instead of a mixing-length
model in their studies, the factor 4 in (5.12b) and (5.12c) would vanish. Moreover,
since ln (1}kz

!
)¯O(ε−"), formula (5.12a) predicts a drag that is about "

#
ε−" larger than

(5.12b, c), which is the result of applying first-order closure models to both inner and
outer layers.

Applying Parseval’s theory to (5.7a) yields

D
n

ρV #L
¯ n(εκ)#µ#(2πg )−" &

¢

−¢

[2(n1) rHηr#η=η
!

®rkH
B
r#] dkO(µ$). (5.13)

Invoking (5.6) and (5.13) and introducing

D
n
¯C

n
ρu#

* &
¢

−¢

h#
Bξ(x) dx, (5.14a)

we obtain

C
n
¯ n

1

U %(l )
[2(n1) (14δB)®1], (5.14b)

where
B¯βφ(1}2β)γln (β). (5.14c)

We illustrate the linear and nonlinear drag force for sinusoidal topography in figure
4(a) ; it shows that the drag force due to nonlinear shear stress and linear normal stress
D

n
is of about the same order as that due to asymmetric pressure Dπ. This conclusion

contradicts most previous studies but is consistent with that of Jacobs (1989) who
pointed out that neglect of nonlinearity in this problem may lead to an underestimate
of the form drag. Figure 4(b) shows that the calculated Dπ for n¯ 2 and n¯ 1 agree
fairly well with BNH’s numerical results and Zilker & Hanratty’s (1979) observational
results, whereas Dπ for n¯ 0 is close to Townsend’s (1972) numerical results.

6. Numerical calculation

Jenkins (1992) showed that ε¯ 0.03–0.07 (typical values in the atmospheric
boundary layer) is not small enough for an asymptotic analysis to be accurate. We now
calculate the solutions to this problem numerically in order to check the reliability of
our analytical results. We will write the linear momentum equations (2.22a) and
(2.22b) and constitutive equations (2.22c) and (2.22d ) as first-order differential
equations with real variables and coefficients, estimate Re (Hη), Im (Hη), Re (Π ) and
Im (Π ) at the surface, and then employ a shooting method that combines an initial
value program for solving ordinary differential equations and a multi-dimensional root
finding program (see Sanford & Shipman 1972).

Equations (2.22a–c) could be transformed into a set of eight coupled first-order
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differential equations with dependent real variables : Re (H ), Im (H ), Re (Hη), Im (Hη),
Re (T ), Im (T ), Re (Π ), Im (Π ) and independent variable η, which is done in Appendix
B.

According to (2.23a) and (2.22c), the lower boundary conditions at the surface
become

(Re (H )¯
Im (H )¯

H
B

0
and (Re (T )¯®2(n1) (εκ)#Re (Hη)

Im (T )¯®2(n1) (εκ)# Im (Hη)
at ηU η

!
.

(6.1a)

(6.1b)

The upper boundary conditions (2.23c, d ), required by the finite energy condition,
become

(Re (H )¯ 0

Im (H )¯ 0
and (Re (Hη)¯ 0

Im (Hη)¯ 0
at ηU¢.

(6.2a)

(6.2b)

Since the boundary conditions at the surface are not complete, we cannot integrate
the equations directly. It is therefore expedient to pursue the solutions through a
shooting method. The shooting procedure involves the following steps. Four estimated
values are assigned to Re (Hη), Im (Hη), Re (Π ) and Im (Π ) at the lower boundary, i.e.

Re (Hη)¯®kH
B
, Re (Π

!
)¯®kH

B
, (6.3a)

Im (Hη)¯ 0, Im (Π
!
)¯ 2(n1) (εκ)#kH

B
, (6.3b)

and together with (6.1a, b), they make up a complete set of boundary conditions. The
corresponding initial value problem (B 1a–h) is solved using the HIPREC integration
routine. The estimates (6.3) are then perturbed and used to derive another set of
solutions. By observing the discrepancy between these two sets of solutions in
satisfying boundary conditions (6.2) at some large η

L
and applying multi-dimensional

root finding Newton–Raphson method, the trial estimates (6.3) can be refined
iteratively. The solutions to linear equations are derived in just one iteration. The
integration routine adjusts the grid size automatically to satisfy the requirement of
tolerance. We used 10−"" as the initial value of tolerance and found that the solutions
are not sensitive to a change around this value. In the above procedure, we apply
the lower boundary conditions at some small value η¯ η

s
to avoid the singularity at

η¯ η
!
, and the values of η

s
and η

L
are adjusted until the solutions are not sensitive to

their change.
The analytical and numerical results obtained here so far apply only to a sinusoidal

topography; however, the same procedure could (in principle) be carried out for the
Fourier components of different wavenumbers to determine the solutions for a hill with
arbitrary shape and mild slope.

7. Results and comparisons

As we mentioned in §1, there have been many studies on turbulent flow over a hill.
This problem was approached either analytically by eddy-viscosity and mixing-length
models or numerically by higher-order Reynolds-stress-closure schemes. The ex-
perimental and numerical results of Zeman & Jensen (1987) both showed a dip in the
Reynolds stress at a height where the maximum speed-up occurs. They pointed out that
this is a remarkable aspect of the dynamics that is left out by current analytical models.
In their computation of the Reynolds stress profile, BNH used a second-order closure
model. Consequently, it is of interest to compare our analytical and numerical results,
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F 5. Comparisons of analytical and numerical results for a roughness length η
!
¯ 2¬10−',

wavenumber k¯ "

#
π and n¯ 0 (lE 0.018, δE 0.11, εE 0.076) : ——, analytical solutions with

matching coefficient (3.35a) ; –[–, analytical solutions with matching coefficient (3.35b) ; –––,
numerical calculation. (a) Re (T ), (b) Im (T ), (c) Re (u), (d ) Im (u), (e) Re (H ), ( f ) Im (H ), (g) Re (Π ),
(h) Im (Π ).

and with those others, and then use these results to quantitatively resolve the effect of
eddy advection on the dynamics of turbulent motion.

In order to justify our analytical approximations, we first compare our analytical
and numerical results for sinusoidal topography h

B
¯Re(exp(ikξ )). Combining (3.13)

and (3.35), invoking (2.16a) and (2.22c) and with the dimensionless wavenumber
k¯ "

#
π, we calculate the analytical solutions of H, Hη and Hηη, Π, u and T in the inner

shear stress layer. Figure 5 compares the analytical and numerical-integration
calculations for a roughness length η

!
¯ 2¬10−' and n¯ 0 (lE 0.018, δE 0.11,

εE 0.076). The real and imaginary parts of a variable show its behaviour at the crest
and the upwind slope of sinusoidal topography respectively.

Both the real and imaginary parts of the shear stress, Re (T ) and Im (T ), and the
perturbation velocity, Re (u) and Im (u), coincide with their numerical predictions fairly
well up to a height where ηW ¯O(10). In contrast, BNH’s analytical results showed a
poor prediction of the imaginary part of the complex amplitude of the shear stress
Im (T ), and they suggested that the mixing-length model is less accurate at the upwind
slope because turbulent advection is strong enough to influence the Reynolds stresses.
Accordingly, we attribute the improvement of our prediction to the incorporation of
eddy advection by using the viscoelastic model. Furthermore, our model reduces the
dip at the top of the inner layer (ηW ¯O(1)) where the perturbation velocity u reaches
its maximum value. We therefore conjecture that this dip in Reynolds stress is mainly
an effect of turbulent advection.

From figure 12, which shows Re (T ) and Im (T ) on a linear vertical scale, we note
the similarity to the well-known solution for a laminar oscillatory boundary layer (cf.



A �iscoelastic model for turbulent flow o�er undulating topography 103

–0.01 0 0.01

101

100

10–2

10–1

(a)

è̂

Re (T )

101

100

10–2

10–1

(d)

è̂

Im (u)

101

100

10–2

10–1

è̂

101

100

10–2

10–1

è̂

0.010

Im (T )

(b) (c)

–1 0 1 2

Re (u)
–0.4 0.2 0.40

101

100

10–2

10–1
è̂

101

100

10–2

10–1
è̂

101

100

10–2

10–1
è̂

101

100

10–2

10–1
è̂

(e) ( f )
(g)

(h)

0.5 0.6 0.7 0.8 0.9

Re (H )
–0.04

Im (H )
0 –1.1 –1.0 –0.8

Re (Π)
15105

Im (Π)

0.02 0–0.010 –0.2

–0.02 –0.9

F 6. Comparisons of analytical and numerical results for a roughness length η
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n¯ 0 (lE 0.03, δE 0.20, εE 0.12) : ——, analytical solutions with matching coefficient (3.35a) ; –[–,
analytical solutions with matching coefficient (3.35b) ; –––, numerical calculation. (a) Re (T ), (b)
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Lamb 1945, p. 620). The oscillations decay with distance from the no-slip boundary.
This oscillation is absent for isolated topography (see figure 8). Thus we propose that
the oscillatory behaviour reflects the horizontal spatial modulation of turbulent flow by
the sinusoidal topography.

The real parts of analytical solutions Re (H ) and Re (Π ) agree well with their
numerical calculations, whereas the imaginary parts Im (H ) and Im (Π ) give
satisfactory predictions only in the lower and upper part of the inner layer respectively.
As also shown in figure 5, the analysis underestimates the numerical value of Im (Π )
by a factor 2 at the surface. According to their analytical solutions (3.13) and (3.35) and
numerical results in figure 5( f, h), Im (H ) and Im (Π ) are O(δ#), and their analytical
solutions are approximations with an error factor 1O(δ). Figure 5(g) confirms that
taking Re (Π ) as a constant is a good approximation, whereas figure 5(h) shows that
Im (Π ) increases by a factor 2 from the top to the bottom of inner layer. Our drag force
formula, based on the assumption of constant pressure in the inner layer, therefore
underestimate the drag force by a factor 2. This may have caused theoretical
predictions of drag force and wave growth rate to be smaller than observation results.

To study how the comparisons change with the small parameters ε and δ, we follow
the same procedure for the roughness length η

!
¯ 2¬10−% and n¯ 0 (lE 0.03,

δE 0.20, εE 0.12), and the results are illustrated in figure 6. It is evident that nothing
fundamental changes except that the analytical and numerical curves do not overlap
each other as well as in figure 5. We find that this deficit is enlarged dramatically when
η
!
U 2¬10−# (δU 0.6, εU 0.50), which suggests that the prediction could be improved

by including higher-order terms of O(ε#,µ#) in the asymptotic analysis. Nevertheless,
these figures strongly suggest that our analysis provides a good approximation for
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F 7. Comparisons of perturbation shear stress profiles at (a) the crest and (b) the upwind slope
of a sinusoidal topography (k¯ "

#
π, µ¯ 0.04, η

!
¯ 4¬10−%) : ——, the present analytical solutions

(n¯ 0) with matching coefficient (3.35a) ; –[–, the present numerical computations ; ¬, , BNH’s
numerical predictions using a second-order closure model.

relatively large ε and δ, and certainly over the ranges in which we are interested (typical
values of ε are 0.03–0.07 in the atmospheric boundary layer).

Figures 7(a) and 7(b) show a comparison of shear stress at the crest and the upwind
slope of sinusoidal topography (k¯ "

#
π, µ¯ 0.04, η

!
¯ 4¬10−%), calculated by the

present analytical and numerical modelling and BNH’s numerical computations using
a second-order closure model. Considering δE 0.25 here, our analytical and numerical
calculations both predict the shear stress fairly well. We note that at the crest, the
analytical solution gives a surface shear stress that is about twice that of BNH’s
numerical modelling; at the upper wind slope, it provides a good approximation.

In figure 8, we demonstrate how well the present model predicts the shear stress at
the top of a hill. The comparison is made between the present analytical and numerical
studies, BNH’s second-order closure model and the observational results at Askevein
(Zeman & Jensen 1987), Nyland hill (Mason 1986) and Blashval (Mason & King 1985)
(BNH, figure 8). We apply our analysis to Askevein with a shape defined by h

B
(ξ )¯

exp(®ξ # log 2), a roughness length η
!
¯ 4¬10−&, but with a different slope µ¯ 0.1.

Both analytical and numerical computations predict a small perturbation of shear
stress in the outer region η¯O(1) and a dip at the top of the inner layer η¯O(l ),
which agrees well with BNH’s second-order closure model and field measurements. On
the other hand, they give a prediction that is about three times those of observations
near the surface. This disagreement may be caused by applying our linear analysis to
steep hills (µ¯ 0.4–0.5) and using a constant roughness length. The measurements
near the surface are not as reliable either. It is worth remarking that the previously
observed oscillation of shear stress is absent in this case.

Figure 9 shows the comparison of shear stress profiles at the crest and the upwind
slope of a propagating water wave, using the present model and Hsu, Hsu &
Street’s (1981) measurements (their figure 5). Hsu et al. studied a travelling wave
with wavenumber, amplitude and phase speed of k¯ 0.04 cm−", a¯ 2.67 cm, and
c¯ 156 cm s−" blown by wind with a friction velocity uk¯ 8.5 cm s−" and a roughness



A �iscoelastic model for turbulent flow o�er undulating topography 105

–1 0 1
10–3

10–1

è

2

ô*/(òu2
*
)

10–2

è= l

F 8. Comparisons of perturbation shear stress profiles at the summit of an isolated hill : ——,
analytical solutions (n¯ 0, η

!
¯ 4¬10−&, µ¯ 0.1) with matching coefficient (3.35a) ; –[–, present

numerical computation; –––, BNH’s numerical predictions using a second-order closure model ; ,
field data collected at Askevein (Zeman & Janssen 1987), Nyland hill (Mason 1986) and Blashval
(Mason & King 1985) (cf. BNH’s figure 8).

length z
!
¯ 0.02 cm; we then derived a matched height z

m
¯ 0.08 cm and its non-

dimensional value η
m

¯ 0.02 with respect to a quarter of the wavelength. Despite the
disagreement in magnitude between theory and experiment, the present model is able
to capture the trend of Hsu et al.’s observations. Taking into account that δE 0.6 here,
this is a good comparison. In addition, we extend our theory of sinusoidal topography
directly to a travelling wave with a roughness length η

!
¯ η

m
.

To study how the value of α, the weight parameter of eddy advection, affects the
results, in figure 10 we plot the numerical computations for the roughness length
η
!
¯ 2¬10−% and n¯ 0 (lE 0.03, δE 0.20, εE 0.12) at α¯ 1}0.15, α¯ 1}0.3 and

α¯ 0. It is worth mentioning that α¯ 0 curves correspond to omitting eddy advection
entirely and using an eddy-viscosity model through the whole domain. Figure 12 shows
that as α¯ 1}0.15U 1}0.3, the magnitude changes ; whereas as α¯ 1}0.15U 0, both
the magnitude and characteristics change dramatically. Hence, this plot gives strong
evidence that eddy advection should be included in the modelling of this problem.

Finally, a comparison of numerical computations using the present viscoelastic
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F 11. Comparisons of numerical results for a roughness length η
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¯ 2¬10−% and n¯ 1: ——,

present model (2.12a, b) ; [[[[, model (A 5a) and (A 6a, b) derived from Townsend’s (1972)
turbulent energy equation. (a) Re (T ), (b) Im (T ), (c) Re (H ), (d ) Im (H ), (e) Re (u), ( f ) Im (u),
(g) Re (Π ), (h) Im (Π ).

model (2.12a, b) and the modified Townsend turbulent model (A 5a) and (A 6a, b) is
displayed in figure 11. The two sets of curves overlap well except for the pressure
profiles. This difference reflects the fact that the two models define normal stresses
differently (cf. (2.12b) and (A 6a, b)). We recall that normal Reynolds stresses are
ignored in our analytical analysis, so that (A 5a) and (A 6a, b) give the same analytical
solutions. Furthermore, our analysis predicts a surface asymmetric pressure about half
that of the present numerical model (see figure 5h and figure 6h), as do the numerical
results of (A 5a) and (A 6a, b) (figure 11h). We therefore conjecture that these two
compare better with each other and that the normal stress formula (A 6a, b) represent
the pressure and normal stresses near the surface better than (2.12b).

8. Discussion and conclusions

We have constructed a viscoelastic model that allows us to calculate the effect of
eddy advection both analytically and numerically. Our analyses are carried out
through matched asymptotic expansions, and our numerical computations through a
shooting method. From both analyses and numerical computations, we predict a dip
in shear stress near the interface between the inner and outer layers (see figure 5a, b and
figure 6a, b). This feature has been noted in numerical models and verified by field
observations but not in analytical models, and it has dynamical significance for this
problem (see Zeman & Jensen 1987). The present model provides quantitative evidence
that this feature is related to eddy convection which most previous authors neglect (see
BNH).

The present model also reveals that the Reynolds shear stress oscillates in that region
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and dies away far from the surface. This oscillatory behaviour reflects the horizontal
spatial modulation of turbulent flow by the sinusoidal topography. As illustrated in
figure 12, it seems analogous to the oscillation in viscous stress with height above an
oscillating plate. This feature, however, has not been detected by any previous models
or observation and warrants further investigation.

In §5, we calculated the leading-order drag force contributed by the Reynolds
stresses and found it vanishes if n¯ 0 (eddy-viscosity models) ; otherwise, it has the
same magnitude as that contributed by asymmetric pressure (e.g. mixing-length
models). This result suggests caution in accepting drag-force formulas that only include
the effect of asymmetric pressure.

The present analysis using the matched asymptotic method gives a good
approximation of the vertical structure of turbulent flow in this problem (see figure 5) ;
however, similar to previous eddy-viscosity models, it underestimates the asymmetric
pressure, Im(Π ), at the surface. Although neglecting the vertical pressure gradient is a
conventional practice in the analysis of this problem, it could cause considerable
underestimation of the asymmetric pressure (see figures 5h and 6h). As discussed in §7,
a higher-order analysis of O(ε#,µ#) including vertical pressure gradient and nonlinearity
is expected to give a better prediction of this problem.

In their recent paper, Belcher & Hunt (1993) extended BNH’s and HLR’s analysis
to turbulent flow over slowly travelling waves. We have extended our theory of
turbulent flow over a hill to turbulent flow over progressive water waves (cf. Zou 1995,
Chap. 1, §8) and found a fair agreement between wave growth rate predicted by the
present theory and Plant’s (1982) compilation of observation data. In contrast to
Belcher & Hunt, we use a roughness length depending on wave age and take the critical
layer into account. Further research on this topic should be carried out.

This work was done as part of my PhD thesis while at Scripps Institution of
Oceanography. Above of all, I wish to thank my thesis advisor John Miles for drawing
my attention to this problem, and for his help with its presentation. I also want to
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anonymous reviewers and editor for their criticisms that helped to improve the original
manuscript. This work was supported in part by the Division of Ocean Sciences of the
National Science Foundation, NSF Grant OCE95-01508 and by the Office of Naval
Research Grant N00014-92-J-1171.

Appendix A. A viscoelastic model

We consider Townsend’s turbulent energy equation (Townsend 1976, §7.13)

u
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where z is the transverse coordinate, φ is the stream function, Lε is the dissipation
length scale, © ª implies averaging, a prime signifies fluctuating variables,

a
"
¯®

©u«w«ª
q#

¯ 0.15, (A 2)

and q# is the turbulent kinetic energy. The left-hand-side term of (A 1) stands for the
advected turbulent energy along a streamline of the stream function, and the right-
hand-side terms represent diffusion, production and dissipation of turbulent energy
respectively.

Neglecting diffusion (see Bradshaw et al. 1967), decomposing the other two right-
hand-side terms into the zeroth-order and perturbation components, i.e.

τ
¥u
¥z

¯ τ
!
U
z
τ

!0¥u¥z®U
z1(τ®τ

!
)U

z
O(δτδu

z
), (A 3a)

τ$/#¯ τ$/#
!

$

#
τ"/#
!

(τ®τ
!
)O((δτ)#), (A 3b)

substituting (A 3a) and (A 3b) into (A 1), at the zeroth-order we have
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which reduces to
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and at the first-order we have

1

a
"

Dτ

Dt
U

z
(τ®τ

!
)¯ 2τ

!0¥u¥z®U
z1 , (A 5a)

where τ
!
¯ ν

!
U
z
is the zeroth-order shear stress. We assume a steady flow and invoke

D}Dt¯ u ¥}¥ξ rφ. Introducing a relaxation time T
e
¯ 1}(a

"
U
z
) and an effective eddy

viscosity ν¯ 2ν
!
, we further transform (A 5a) into

T
e
¯

Dτ

Dt
(τ®τ

!
)¯ ν0¥u¥z®U

z1 (A 5b)

which is identified as a viscoelastic model with n¯ 1 (see (2.12a)). According to
Townsend (1976), near the surface, the ratios between Reynolds stresses are constants
with approximate values

α
"
¯

®©u«#ª
©u«w«ª

¯ 6.3 and α
#
¯

®©w«#ª
©u«w«ª

¯ 1.7. (A 6a, b)
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This modelling is verified by both field data and numerical computations (Bradshaw
et al. 1967; Zeman & Jensen 1987). We assume that relationships (A 6a, b) are valid
throughout the inner domain.

Appendix B. The first-order equations

The first-order equations are

dRe (H )

dη
¯Re (Hη),

d Im (H )

dη
¯ Im (Hη), (B 1a, b)

dRe (Hη)

dη
¯®

1

U 9Re (T )Re 01ν1®Im (T ) Im 01ν1:®
2Uη

U
Re (Hη)®

k#

n1
Re (H ),

(B 1c)

d Im(Hη)

dη
¯®

1

U 9Im (T )Re 01ν1Re (T ) Im 01ν1:®
2Uη

U
Im (Hη)®

k#

n1
Im (H ),

(B 1d )

dRe (T )

dη
¯kU# Im (Hη)®k Im (Π )k Im (Σ ), (B 1e)

d Im (T )

dη
¯®kU#Re (Hη)kRe (Π )®kRe (Σ ), (B 1 f )

dRe (Π )

dη
¯k#U #Re (H )®Re (Ση)®k Im (T ), (B 1g)

d Im (Π )

dη
¯k#U # Im (H )®Im (Ση)kRe (T ), (B 1h)

where

Re (Σ )¯
2k

n1
[Im (ν) (Uη Re (H )URe (Hη))Re (ν) (Uη Im (H )U Im (Hη))],

(B 2a)

Im (Σ )¯®
2k

n1
[Re (ν) (Uη Re (H )URe (Hη))-Im (ν) (Uη Im (H )U Im (Hη))],

(B 2b)

Re (Ση)¯
2k

(n1)
[Im (νη) (Uη Re (H )URe (Hη))Re (νη) (Uη Im (H )U Im (Hη))

Uηη(Im (ν)Re (H )Re (ν) Im (H ))®Im (T )], (B 2c)

Im (Ση)¯®
2k

n1
[Re (νη) (Uη Re (H )URe (Hη))®Im (νη) (Uη Im (H )U Im (Hη))

Uηη(Re (ν)Re (H )®Im (ν) Im (H ))®Re (T )], (B 2d )

Re (ν)¯
(n1) (εκ)#Uη

U#
η(kαU )#

, Im (ν)¯
®(n1) (εκ)#kαU

U#
η(kαU )#

, (B 3a, b)

Re (νη)¯
®(n1) (εκ)#Uη

[U#
η(kαU )#]#

²Uηη[U#
η®(kαU )#]2(kαUη)#U ´ (B 3c)
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and

Im (νη)¯
®(n1) (εκ)#kαUη

[U#
η(kαU )#

[U#
η®(kαU )#®2UUη]. (B 3d )
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